3.2.6 编译ONNX模型
BMNETO 是针对 ONNX 的模型编译器,可以把 ONNX 格式的 model 经过图编译优化后,转换成 BMRuntime 所需的文件。在编译模型的同时,可选择将每一个操作的 NPU 模型计算结果和 CPU 的计算结果进行对比, 保证正确性。
命令行形式:
python3 -m bmneto [--model=<path>] \
[--input_names=<string>] \
[--shapes=<string>] \
[--outdir=<path>] \
[--target=<name>] \
[--net_name=<name>] \
[--opt=<value>] \
[--dyn=<bool>] \
[--cmp=<bool>] \
[--mode=<string>] \
[--descs=<string>] \
[--enable_profile=<bool>] \
[--output_names=<string>] \
[--list_ops]
参数介绍:
args
type
Description
model
string
Necessary.ONNX model (.onnx) path
input_names
string
Optional.Set name of all network inputs one by one in sequence. Format “name1,name2,name3”
shapes
string
Necessary. Shapes of all inputs, default use the shape in prototxt, format [[x,x,x,x],[x,x],…], these correspond to inputs one by one in sequence
outdir
string
Necessary. Output directory
target
string
Necessary. Option: BM1682, BM1684; default: BM1682
net_name
string
Optional. Name of the network, default use the name in onnx path
opt
int
Optional. Optimization level. Option: 0, 1, 2, default 1.
dyn
bool
Optional. Use dynamic compilation, default false.
cmp
bool
Optional.Check result during compilation. Default: true
mode
string
Optional. Set bmnetc mode. Option: compile, GenUmodel. Default: compile.
descs
string
Optional. Describe data type and value range of some input in format: "[ index, data format, lower bound, upper bound ]", where data format could be fp32, int64. For example, "[0, int64, 0, 100]", meaning input of index 0 has data type as int64 and values in [0, 100). If no description of some input given, the data type will be fp32 as default and uniformly distributed in 0 ~ 1.
enable_profile
bool
Optional. Enable profile log. Default: false
output_names
string
Optional. Set name of all network outputs one by one in sequence. Format "name1,name2,name2"
list_ops
Optional. List supported ops.
Python模式:
import bmneto
## compile fp32 model
bmneto.compile(
model = "/path/to/.pth", ## Necessary
outdir = "xxx", ## Necessary
target = "BM1684", ## Necessary
shapes = [[x,x,x,x], [x,x,x]], ## Necessary
net_name = "name", ## Necessary
input_names = ['name0','name1'] ## Necessary
opt = 2, ## optional, if not set, default equal to 1
dyn = False, ## optional, if not set, default equal to False
cmp = True, ## optional, if not set, default equal to True
enable_profile = True ## optional, if not set, default equal to False
descs = [[0, int, 0, 128]] ## optional, if not set, default equal to [[x, float, 0,
,→ 1]]
output_names = ['oname0','oname1'] ## optional, if not set, default equal to graph␣ ,→output names
)
bmneto若成功,输出的 log 最后会看到以下信息:
######################################
# Store bmodel of BMCompiler.
######################################
bmneto成功后,将在指定的文件夹中生成一个compilation.bmodel的文件,该文件则是转换成功的 bmodel,用户可以重命名。
最后更新于