✏️
SophonSDK3开发指南
  • SophonSDK3 开发指南
  • 1 SDK软件包
    • 1.1 SDK 简介
    • 1.2 资料简介
    • 1.3 获取SDK
    • 1.4 安装SDK
      • 1.4.1 环境配置-Linux
      • 1.4.2 环境配置-Windows
      • 1.4.3 环境配置-SoC
    • 1.5 更新SDK
    • 1.6 SDK更新记录
    • 1.7 SDK已知问题
  • 2 快速入门
    • 2.1 移植开发综述
    • 2.2 重要概念
    • 2.3 样例程序
  • 3 网络模型迁移
    • 3.1 模型迁移概述
    • 3.2 FP32 模型生成
    • 3.3 INT8 模型生成
      • 3.3.1 准备lmdb数据集
      • 3.3.2 生成FP32 Umodel
      • 3.3.3 生成INT8 Umodel
      • 3.3.4 精度测试
      • 3.3.5 生成INT8 Bmodel
      • 3.3.6 auto_cali一键量化工具
  • 4 算法移植
    • 4.1 算法移植概述
    • 4.2 C/C++编程详解
    • 4.3 Python编程详解
    • 4.4 解码模块
    • 4.5 图形运算加速模块
    • 4.6 模型推理
  • 5 打包和发布
    • 5.1 概述
    • 5.2 PCIE加速卡模式
    • 5.3 SOC模式
  • 附录
由 GitBook 提供支持
在本页
  1. 3 网络模型迁移
  2. 3.3 INT8 模型生成

3.3.6 auto_cali一键量化工具

上一页3.3.5 生成INT8 Bmodel下一页4.1 算法移植概述

最后更新于2年前

对于常见以图片作为输入的CV类推理网络,推荐使用auto_cali一键量化工具。这个工具是分步量化的整合,操作更加简单,支持使用LMDB或者原始图片完成量化,可以减少分步量化过程中手工输入引起的错误等,其功能如下:

  • 一键完成从原始框架(TensorFlow/PyTorch/Caffe/Darknet/MxNet/PaddlePaddle/ONNX)到BM1684芯片bmodel的转换

  • 可根据预设的优化参数组合根据int8模型精度结果自动进行量化策略搜索,找到满足精度要求的最佳量化策略

具体的使用方法,请参考《量化工具用户开发手册》。

auto_cali一键量化工具